Bayesian sample size determination for case-control studies with misclassification
نویسندگان
چکیده
Case-control studies are among the most commonly used means of assessing association between exposure and outcome. Sample size determination and the optimal control-to-case ratio are vital to the design of such studies. In this article we investigate Bayesian sample size determination and the control-to-case ratio for case-control studies, when interval estimation is the goal of the eventual statistical analysis. In certain cases we are able to derive approximate closed-form sample size formulas. We also describe two Monte Carlo methods, each of which provides a unified approach to the sample size problem, because they may be applied to a wide range of interval-based criteria. We compare the accuracy of the different methods. We also extend our methods to include cross-sectional designs and designs for gene–environment interaction studies.
منابع مشابه
Bayesian sample size determination for case-control studies when exposure may be misclassified.
Odds ratios are frequently used for estimating the effect of an exposure on the probability of disease in case-control studies. In planning such studies, methods for sample size determination are required to ensure sufficient accuracy in estimating odds ratios once the data are collected. Often, the exposure used in epidemiologic studies is not perfectly ascertained. This can arise from recall ...
متن کاملBayesian Determination of Sample Size in Longitudinal Studies with Binary Responses Using Random Effects Models
Sample size determination is important in all statistical studies including longitudinal studies. This is usually done by considering a target power to reduce the costs of sampling. Choosing the right sample size using efficient methods, ensures that the researcher achieve goal of the study, by spending the least amount of energy, time and money. In this article, using a method based on simulat...
متن کاملBayesian Sample size Determination for Longitudinal Studies with Continuous Response using Marginal Models
Introduction Longitudinal study designs are common in a lot of scientific researches, especially in medical, social and economic sciences. The reason is that longitudinal studies allow researchers to measure changes of each individual over time and often have higher statistical power than cross-sectional studies. Choosing an appropriate sample size is a crucial step in a successful study. A st...
متن کاملBayesian Sample Size Determination for Joint Modeling of Longitudinal Measurements and Survival Data
A longitudinal study refers to collection of a response variable and possibly some explanatory variables at multiple follow-up times. In many clinical studies with longitudinal measurements, the response variable, for each patient is collected as long as an event of interest, which considered as clinical end point, occurs. Joint modeling of continuous longitudinal measurements and survival time...
متن کاملWhen a case is not a case: effects of phenotype misclassification on power and sample size requirements for the transmission disequilibrium test with affected child trios.
Phenotype misclassification in genetic studies can decrease the power to detect association between a disease locus and a marker locus. To date, studies of misclassification have focused primarily on case-control designs. The purpose of this work is to quantify the effects of phenotype misclassification on the transmission disequilibrium test (TDT) applied to affected child trios, where both pa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Computational Statistics & Data Analysis
دوره 51 شماره
صفحات -
تاریخ انتشار 2007